
杭州和盈教育是专业从事软件人才培训的职业培训机构,培训讲师由具有丰富经验的*软件工程师组成。
【杭州和盈教育】◆24小时咨询热线:400-888-5484 QQ:2638026967◆和盈教育专注于,大数据工程师实训,。在线预约可享受免费试听课程,更多优惠请电话咨询在线值班老师!!!
杭州和盈教育培养熟练掌握软件开发技能、具备较高软件工程能力的、能适应大中型软件企业实际需求的软件从业人才,努力成为高素质、实用型软件人才的培养基地,致力于成为*IT人力资源解决方案令人满意的提供者。
以下是有关和盈教育大数据工程师实训课程相关介绍以及大数据工程师实训资讯动态...
*阶段
|
第二阶段
|
第三阶段
|
Java语言基础数据库基础,JDBCSocket网络编程数据结构与算法Linux基础知识Linux管理Linux服务Linux Shell编程
|
Hadoop基础分布式文件系统HDFS并行计算框架MapReduce数据仓库HiveETL工具Sqoop工作流引擎Azkaban分布式协调系统Zookeeper列式数据库HBase
|
实时计算框架Storm消息订阅分发系统Kafka海量日志采集系统Flume函数式编程Scala交互式计算框架Spark数据挖掘与R语言集群运维与调优
|

大数据挖掘中数据挖掘的方法
数据挖掘的方法
⑴神经网络方法
神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、BP反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以Hopfield的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以ART模型、Koholon模型为代表的,用于聚类的自组织映射方法。神经网络方法的缺点是"黑箱"性,人们难以理解网络的学习和决策过程。
⑵遗传算法
遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。
Sunil已成功地开发了一个基于遗传算法的数据挖掘工具,利用该工具对两个飞机失事的真实数据库进行了数据挖掘实验,结果表明遗传算法是进行数据挖掘的有效方法之一[4]。遗传算法的应用还体现在与神经网络、粗集等技术的结合上。如利用遗传算法优化神经网络结构,在不增加错误率的前提下,删除多余的连接和隐层单元;用遗传算法和BP算法结合训练神经网络,然后从网络提取规则等。但遗传算法的算法较复杂,收敛于局部极小的较早收敛问题尚未解决。
⑶决策树方法
决策树是一种常用于预测模型的算法,它*将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。*有影响和*早的决策树方法是由Quinlan提出的著名的基于信息熵的ID3算法。它的主要问题是:ID3是非递增学习算法;ID3决策树是单变量决策树,复杂概念的表达困难;同性间的相互关系强调不够;抗噪性差。针对上述问题,出现了许多较好的改进算法,如 Schlimmer和Fisher设计了ID4递增式学习算法;钟鸣,陈文伟等提出了IBLE算法等。
⑷粗集方法
粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于操作。粗集处理的对象是类似二维关系表的信息表。目前成熟的关系数据库管理系统和新发展起来的数据仓库管理系统,为粗集的数据挖掘奠定了坚实的基础。但粗集的数学基础是集合论,难以直接处理连续的属性。而现实信息表中连续属性是普遍存在的。因此连续属性的离散化是制约粗集理论实用化的难点。现在国际上已经研制出来了一些基于粗集的工具应用软件,如加拿大Regina大学开发的KDD-R;美国Kansas大学开发的LERS等。
⑸覆盖正例排斥反例方法
它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。比较典型的算法有Michalski的AQ11方法、洪家荣改进的AQ15方法以及他的AE5方法。
⑹统计分析方法
在数据库字段项之间存在两种关系:函数关系(能用函数公式表示的确定性关系)和相关关系(不能用函数公式表示,但仍是相关确定性关系),对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计(求大量数据中的*值、*小值、总和、平均值等)、回归分析(用回归方程来表示变量间的数量关系)、相关分析(用相关系数来度量变量间的相关程度)、差异分析(从样本统计量的值得出差异来确定总体参数之间是否存在差异)等。
⑺模糊集方法
即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。李德毅等人在传统模糊理论和概率统计的基础上,提出了定性定量不确定性转换模型--云模型,并形成了云理论。

六大数据分析工具
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。该数据集通常是万亿或EB的大小。这些数据集收集自各种各样的来源:传感器,气候信息,公开的信息,如杂志,报纸,文章。大数据产生的其他例子包括购买交易记录,网络日志,病历,军事监控,视频和图像档案,及大型电子商务。
在大数据和大数据分析,他们对企业的影响有一个兴趣高涨。大数据分析是研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。
大数据分析工具汇总
1Hadoop
Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,*并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
⒈高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
⒉高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
⒊高效性。Hadoop能够在节点之间动态地移动数据,并*各个节点的动态平衡,因此处理速度非常快。
⒋高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
2 HPCC
HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与 通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是*加强研究与开发解决一批重要的科学与技术挑战问题。HPCC是美国 实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
该项目主要由五部分组成:
1、高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;
2、先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;
|